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Section 1: Summary 
In this project, we investigated several classification methods on the Fashion-MNIST dataset. We 
used K Nearest Neighbors, Logistic Regression, Feedforward Neural Networks, and 
Convolutional Neural Networks to conduct this investigation. We aimed to determine the most 
effective approach for accurately categorizing the fashion items in the dataset. We found there is 
no perfect algorithm to classify the dataset; however, Convolutional Neural Networks 
outperformed all the other methods. 
 
Section 2: Data Description 
For this project we used Fashion-MNIST, a widely used benchmark dataset in the field of 
machine learning. Fashion-MNIST comprises 60,000 grayscale images of fashion items, each 
categorized into one of 10 classes. Each image is 28x28 pixels in size, providing a total of 784 
features per sample. 

 
We visualized a subset of sample images from the Fashion-MNIST dataset to gain more of an 
understanding of the types of fashion items present and their visual features. This visualization 
helped us identify common patterns and variations within the dataset. 

 
In “Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms” 
by Han Xiao, Kashif Rasul, and Roland Vollgraf, the authors introduce Fashion-MNIST as a 
modern replacement for the traditional MNIST dataset. Fashion-MNIST presents a more 
challenging and diverse collection of fashion-related images, making it a more valuable 
benchmark for assessing machine learning algorithms. Through comprehensive evaluation, the 
authors provide valuable insights into the dataset's characteristics and its suitability for 
benchmarking classification approaches. 



 

Section 3: Classifiers 
●​ K Nearest Neighbors 

○​ Predicts the class of a new data point based on the majority class of its k nearest 
neighbors in the feature space, K values tested: 1,3,5,7,11,51,111, Scikit-learn was used 

●​ Logistic Regression 
○​ A linear classification algorithm that models the probability of a discrete outcome using 

the logistic function. It finds the best-fitting line that separates the classes in feature 
space. Some hyperparameters are: 
■​ Penalty (Regularization): Controls overfitting by penalizing large parameter values. 

Range: ['l1'(Lasso regularization), 'l2' (Ridge regularization), 'None'] 
■​ C (Regularization strength): A parameter that trades off fitting the training data well 

against keeping the model simple. Range: [0.001, 0.01, 0.1, 1, 10, 100] Smaller 
values means stronger regularization. 

■​ Solver: Algorithm to use in the optimization problem. Range: ['liblinear', 'lbfgs', 
'newton-cg', 'sag', 'saga'] 

○​ Used scikit-learn 
●​ Feedforward Neural Networks 

○​ Use matrix-vector operations in multiple layers of neurons to predict the class from input 
data, employing activation functions to learn complex, non-linear representations 

○​ We utilized ReLU activation and stochastic gradient descent for faster computation, with 
one hidden layer to study parameter effects 

○​ Hyperparameters investigated include learning rates (0.001, 0.01, 0.1), L2 regularization 
strength (0.001, 0.01, 0.1), hidden layer node count (32, 64, 128), and batch sizes (128, 
256, 512) 

○​ Scikit-learn was used for training and testing 
●​ Convolutional Neural Networks 

○​ Classifies new data, such as images, by decomposing them into smaller components and 
passing them through interconnected layers of neurons to learn patterns for prediction 

○​ We explored parameters like learning rate (0.001, 0.01, 0.1), layer count (3, 4), filter 
quantity per layer (3-4), kernel sizes (3x3, 4x4), max pooling (0, 2), dense layer count 
(2-3), neuron count per dense layer (2-3), and batch size (32, 64) 

○​ Tensorflow was used for this model 
 

Section 4: Experimental Setup 
●​ Metrics: 

○​ Training Accuracy, Validation Accuracy, and Testing Accuracy 
●​ Data Partitioning: 

○​ Three subsets: 70% of the data for testing, 15% for validation, and 15% for testing 
●​ Hyperparameter Selection: 

○​ Hyperparameters vary depending on which classifier is being used 



 

■​ K Nearest Neighbors: K (1, 3, 5, 7, 11, 51, 111) 
■​ Logistic Regression: Penalty (l1, l2, None), C (0.001, 0.01, 0.1, 1, 10, 100), Solver 

('liblinear', 'lbfgs', 'newton-cg', 'sag', 'saga') 
■​ Feedforward Neural Networks: Learning rate(.001, .01,.1), Regularization(.0001,.001, 

.01,.1), Nodes in the hidden layer (32,64,128,256), and the batch size for the 
stochastic gradient descent(128, 256, 512).  

■​ Convolutional Neural Networks: Learning rate (0.001, 0.01, 0.1), number of layers (3, 
4), number of filters for each layer (3 - 4), kernel sizes (3x3, 4x4), max pooling (0, 2), 
number of dense layers (2 - 3), number of neurons in each dense layer (2 - 3), and 
batch size (32, 64) 

○​ Selected various different hyperparameters to test the effect of each on the dataset 
(Specific hyperparameter selection shown in experimental results tables) 

 
Section 5: Experimental Results 
K Nearest Neighbors 

K Training 
Accuracy 

Validation  
Accuracy 

Testing 
Accuracy 

1 1.0 0.844 0.849 

3 0.915 0.851 0.853 

5 0.894 0.853 0.851 

7 0.881 0.853 0.855 

11 0.870 0.849 0.850 

51 0.833 0.827 0.826 

111 0.816 0.807 0.813 

 
Increasing k lowers the error until a certain point. 
Out of the values of k that were tested, the one 
that seems best for the model is 7 because it has the lowest testing error. 

 
Logistic Regression 
 

Run # Penalty C Solver Training Accuracy Validation Accuracy Testing Accuracy 

1 None N/A lbfgs 0.9269 0.8031 0.7978 

2 l1 0.01 saga 0.8289 0.8193 0.8134 

3 None N/A newton-cg 0.9270 0.8007 0.7951 



 

 

Overall, the results vary dramatically depending on the different hyperparameters being used. 
This ultimately shows there are multiple ways of achieving a desirable result from logistic 
regression models. There is no one true best set of hyperparameters, especially when considering 
your own individual goal from the model. 
 
FeedForward Neural Networks  
From these results you can see that 
increasing the learning rate drastically 
increased the error from both training 
and validation error no matter the other 
parameters, which means that 
feedforward or 1 hidden layer neural 
networks are very sensitive to 
overshooting convergence with 
learning rate. While regularization did 
not have much effect on the error, batch 
size and number of nodes did 
successfully decrease the error, and so 
when selecting the smallest batch size 
with the highest # of nodes, as well as 
some regularization, we get the 
parameters that give us the smallest 
validation error. When putting this set of parameters with the testing data, we received a testing 
accuracy of :  .81422  or 81.4% 
 
Convolutional Neural Networks 

4 None N/A sag 0.9068 0.8367 0.8267 

5 l1 10 liblinear 0.9095 0.8184 0.8071 

6 l2 0.001 saga 0.8551 0.8394 0.8298 

7 l2 0.01 lbfgs 0.8827 0.8521 0.8395 

8 l2 0.1 sag 0.9025 0.8425 0.8302 

9 l2 1 liblinear 0.9000 0.8334 0.8217 

10 l2 100 newton-cg 0.9275 0.8001 0.7943 
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Increasing the learning rate seems to lower the testing accuracy. This could be because the model 
overshot the convergence point. Adding another convolutional layer increased the testing 
accuracy. Adding another dense layer and increasing the batch size had minimal effects on the 
testing accuracy.  
 
Section 6: Insights 
While conducting these experiments and this project we have come to the conclusion that there is 
no one perfect algorithm or way to classify the fashion-mnist dataset, and that it is much more 
difficult to fine tune then the regular MNIST dataset which was able to achieve up to 95% 
accuracy while we achieved at most 85%. The highest accuracy came from the Convolutional 
Neural Networks which makes the most sense logically since it is oftentimes practically used for 
image classification and analysis while the other methods were not. The lowest best testing 
accuracy ends up coming from the Feed Forward Neural Network closely followed by Logistic 
Regression which shows that those methodologies are better suited for concrete numerative data 
as opposed to qualitative images, while KNN showcases itself to be more flexible in its uses and 
applications. 
 

0.001 3 (32,64,64) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.845 0.827 0.837 

0.001 3 (64,64,128) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.869 0.856 0.858 

0.01 3 (64,64,128) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.848 0.838 0.832 

0.1 3 (64,64,128) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.099 0.098 0.106 

0.001 4 (64,128,128,256) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.884 0.876 0.872 

0.001 4 (64,128,128,256) 3x3 (all) 2 (2x2) 3 (64,32,10) 32 0.883 0.873 0.876 

0.001 4 (64,128,128,256) 3x3 (all) 2 (2x2) 3 (64,32,10) 64 0.882 0.872 0.874 

0.001 4 (64,128,128,256) 4x4 (all) 2 (2x2) 3 (64,32,10) 64 0.885 0.873 0.873 

0.001 4 (64,128,128,256) 4x4 (all) 0 3 (64,32,10) 64 0.869 0.856 0.862 
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