An Investigation of Classification Methods for Fashion-MNIST
Authors: Thadiel Zancoli, Bevan To, and Matthew Busby

Section 1: Summary

In this project, we investigated several classification methods on the Fashion-MNIST dataset. We
used K Nearest Neighbors, Logistic Regression, Feedforward Neural Networks, and
Convolutional Neural Networks to conduct this investigation. We aimed to determine the most
effective approach for accurately categorizing the fashion items in the dataset. We found there is

no perfect algorithm to classify the dataset; however, Convolutional Neural Networks
outperformed all the other methods.

Section 2: Data Description

For this project we used Fashion-MNIST, a widely used benchmark dataset in the field of
machine learning. Fashion-MNIST comprises 60,000 grayscale images of fashion items, each
categorized into one of 10 classes. Each image is 28x28 pixels in size, providing a total of 784
features per sample.

We visualized a subset of sample images from the Fashion-MNIST dataset to gain more of an
understanding of the types of fashion items present and their visual features. This visualization
helped us identify common patterns and variations within the dataset.

Distribution of Clothing Types in Fashion-MNIST Training Set

2000

1500 4

1000 +

Number of Samples.

o
|

S 'Y o X
& & & ®
3 <

* x g
& s
& A&

o
2 @ S
&

& N

& & &
2
<5 &
Clothing Type

b

In “Fashion-MNIST: A Novel Image Dataset for Benchmarking Machine Learning Algorithms’
by Han Xiao, Kashif Rasul, and Roland Vollgraf, the authors introduce Fashion-MNIST as a
modern replacement for the traditional MNIST dataset. Fashion-MNIST presents a more
challenging and diverse collection of fashion-related images, making it a more valuable
benchmark for assessing machine learning algorithms. Through comprehensive evaluation, the
authors provide valuable insights into the dataset's characteristics and its suitability for
benchmarking classification approaches.

Section 3: Classifiers
e K Nearest Neighbors
o Predicts the class of a new data point based on the majority class of its k nearest
neighbors in the feature space, K values tested: 1,3,5,7,11,51,111, Scikit-learn was used
e Logistic Regression
o A linear classification algorithm that models the probability of a discrete outcome using
the logistic function. It finds the best-fitting line that separates the classes in feature
space. Some hyperparameters are:

m Penalty (Regularization): Controls overfitting by penalizing large parameter values.
Range: ['11'(Lasso regularization), '12' (Ridge regularization), 'None']

m C (Regularization strength): A parameter that trades off fitting the training data well
against keeping the model simple. Range: [0.001, 0.01, 0.1, 1, 10, 100] Smaller
values means stronger regularization.

m Solver: Algorithm to use in the optimization problem. Range: ['liblinear, 'Ibfgs',
'newton-cg', 'sag', 'saga'l

o Used scikit-learn
e Feedforward Neural Networks
o Use matrix-vector operations in multiple layers of neurons to predict the class from input
data, employing activation functions to learn complex, non-linear representations
o We utilized ReLU activation and stochastic gradient descent for faster computation, with
one hidden layer to study parameter effects
o Hyperparameters investigated include learning rates (0.001, 0.01, 0.1), L2 regularization
strength (0.001, 0.01, 0.1), hidden layer node count (32, 64, 128), and batch sizes (128,
256, 512)
o Scikit-learn was used for training and testing
e Convolutional Neural Networks
o Classifies new data, such as images, by decomposing them into smaller components and
passing them through interconnected layers of neurons to learn patterns for prediction
o We explored parameters like learning rate (0.001, 0.01, 0.1), layer count (3, 4), filter
quantity per layer (3-4), kernel sizes (3x3, 4x4), max pooling (0, 2), dense layer count
(2-3), neuron count per dense layer (2-3), and batch size (32, 64)
o Tensorflow was used for this model

Section 4: Experimental Setup
e Metrics:

o Training Accuracy, Validation Accuracy, and Testing Accuracy
e Data Partitioning:

o Three subsets: 70% of the data for testing, 15% for validation, and 15% for testing
e Hyperparameter Selection:

o Hyperparameters vary depending on which classifier is being used

m K Nearest Neighbors: K (1, 3, 5, 7, 11, 51, 111)

m Logistic Regression: Penalty (11, 12, None), C (0.001, 0.01, 0.1, 1, 10, 100), Solver
('liblinear', 'Ibfgs', newton-cg', 'sag', 'saga')

m Feedforward Neural Networks: Learning rate(.001, .01,.1), Regularization(.0001,.001,
.01,.1), Nodes in the hidden layer (32,64,128,256), and the batch size for the
stochastic gradient descent(128, 256, 512).

m Convolutional Neural Networks: Learning rate (0.001, 0.01, 0.1), number of layers (3,
4), number of filters for each layer (3 - 4), kernel sizes (3x3, 4x4), max pooling (0, 2),
number of dense layers (2 - 3), number of neurons in each dense layer (2 - 3), and
batch size (32, 64)

o Selected various different hyperparameters to test the effect of each on the dataset

(Specific hyperparameter selection shown in experimental results tables)

Section 5: Experimental Results
K Nearest Neighbors

K Training Validation Testing Error Rates vs. Number of Neighbors (k)
0.200 o
Accuracy Accuracy Accuracy — Training Error
—— Testing Error
0175 — Valida?\un Error
1 1.0 0.844 0.849
0.150 1
3 0.915 0.851 0.853
0.125 1
5 0.894 0.853 0.851
0.100 1
7 0.881 0.853 0.855
0.075 4
11 0.870 0.849 0.850
0.050 1
51 0.833 0.827 0.826
0.025 4
111 0.816 0.807 0.813
0.000 4
160 161 7 162
Increasing k lowers the error until a certain point. Number of Neighbors (i)

Out of the values of k that were tested, the one
that seems best for the model is 7 because it has the lowest testing error.

Logistic Regression

Run # Penalty C Solver Training Accuracy | Validation Accuracy | Testing Accuracy
1 None N/A Ibfgs 0.9269 0.8031 0.7978
2 11 0.01 saga 0.8289 0.8193 0.8134

3 None N/A | newton-cg 0.9270 0.8007 0.7951

4 None N/A sag 0.9068 0.8367 0.8267
5 11 10 liblinear 0.9095 0.8184 0.8071
6 12 0.001 saga 0.8551 0.8394 0.8298
7 12 0.01 lbfgs 0.8827 0.8521 0.8395
8 12 0.1 sag 0.9025 0.8425 0.8302
9 12 1 liblinear 0.9000 0.8334 0.8217
10 12 100 | newton-cg 0.9275 0.8001 0.7943

Overall, the results vary dramatically depending on the different hyperparameters being used.
This ultimately shows there are multiple ways of achieving a desirable result from logistic

regression models. There is no one true best set of hyperparameters, especially when considering
your own individual goal from the model.

FeedForward Neural Networks

From these results you can see that
increasing the learning rate drastically
increased the error from both training
and validation error no matter the other
parameters, which means that
feedforward or 1 hidden layer neural
networks are very sensitive to
overshooting convergence with
learning rate. While regularization did
not have much effect on the error, batch
size and number of nodes did
successfully decrease the error, and so
when selecting the smallest batch size
with the highest # of nodes, as well as
some regularization, we get the
parameters that give us the smallest

validation error. When putting this set of parameters with the testing data, we received a testing

accuracy of : .81422 or 81.4%

Convolutional Neural Networks

Learning Rate batch_size

0.001

0.010

0.100

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.001

0.010

256

256

256

256

256

Nodes regularization training accuracy Validation accuracy

64

64

64

32

128

256

64

64

64

64

64

256

256

256

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0010

0.0100

0.1000

0.0001

0.0010

0.0100

0.0010

0.378921

0.100800

0.098690

0.101470

0.770119

0.823000

0571230

0.356950

0.543047

0417190

0.226730

0.861785

0.848214

0.101571

0.374550

0.095700

0.102880

0.099200

0.752300

0.799770

0.557770

0.347550

0.535111

0.410111

0.226440

0.834550

0.813880

0.099220

Learning # of

Rate Layers # of Filters Kernel sizes

Max
Pooling

#of
Dense
Layers

of Neurons
in each Dense
Layer

Batch
Size

Training Validation
Accuracy Accuracy

Testing
Accuracy

0.001 3 (32,64,64) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.845 0.827 0.837
0.001 3 (64,64,128) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.869 0.856 0.858
0.01 3 (64,64,128) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.848 0.838 0.832

0.1 3 (64,64,128) 3x3 (all) 2 (2x2) 2 (64,10) 32 0.099 0.098 0.106
0.001 4 (64,128,128,256) | 3x3 (all) 2(2x2) 2 (64,10) 32 0.884 0.876 0.872
0.001 4 (64,128,128,256) | 3x3 (all) 2 (2x2) 3 (64,32,10) 32 0.883 0.873 0.876
0.001 4 (64,128,128,256) | 3x3 (all) 2 (2x2) 3 (64,32,10) 64 0.882 0.872 0.874
0.001 4 (64,128,128,256) | 4x4 (all) 2 (2x2) 3 (64,32,10) 64 0.885 0.873 0.873
0.001 4 (64,128,128,256) | 4x4 (all) 0 3 (64,32,10) 64 0.869 0.856 0.862

Increasing the learning rate seems to lower the testing accuracy. This could be because the model
overshot the convergence point. Adding another convolutional layer increased the testing
accuracy. Adding another dense layer and increasing the batch size had minimal effects on the
testing accuracy.

Section 6: Insights
While conducting these experiments and this project we have come to the conclusion that there is

no one perfect algorithm or way to classify the fashion-mnist dataset, and that it is much more
difficult to fine tune then the regular MNIST dataset which was able to achieve up to 95%
accuracy while we achieved at most 85%. The highest accuracy came from the Convolutional
Neural Networks which makes the most sense logically since it is oftentimes practically used for
image classification and analysis while the other methods were not. The lowest best testing
accuracy ends up coming from the Feed Forward Neural Network closely followed by Logistic
Regression which shows that those methodologies are better suited for concrete numerative data
as opposed to qualitative images, while KNN showcases itself to be more flexible in its uses and
applications.

	Section 1: Summary
	Section 2: Data Description
	Section 3: Classifiers
	●​K Nearest Neighbors

	Section 4: Experimental Setup
	■​K Nearest Neighbors: K (1, 3, 5, 7, 11, 51, 111)

	
	Section 5: Experimental Results
	
	# of Layers
	3
	3
	3
	3
	4
	4
	4
	4
	4
	Section 6: Insights

